On the Gauge Equivalence of Twisted Quantum Doubles of Elementary Abelian and Extra-Special 2-Groups
نویسنده
چکیده
We establish braided tensor equivalences among module categories over the twisted quantum double of a finite group defined by an extension of a group G by an abelian group, with 3-cocycle inflated from a 3-cocycle on G. We also prove that the canonical ribbon structure of the module category of any twisted quantum double of a finite group is preserved by braided tensor equivalences. We give two main applications: first, if G is an extra-special 2-group of width at least 2, we show that the quantum double of G twisted by a 3-cocycle ω is gauge equivalent to a twisted quantum double of an elementary abelian 2-group if, and only if, ω2 is trivial; second, we discuss the gauge equivalence classes of twisted quantum doubles of groups of order 8, and classify the braided tensor equivalence classes of these quasi-triangular quasi-bialgebras. It turns out that there are exactly 20 such equivalence classes.
منابع مشابه
Group Cohomology and Gauge Equivalence of Some Twisted Quantum Doubles
We study the module category associated to the quantum double of a finite abelian group G twisted by a 3-cocycle, which is known to be a braided monoidal category, and investigate the question of when two such categories are equivalent. We base our discussion on an exact sequence which interweaves the ordinary and Eilenberg-Mac Lane cohomology of G. Roughly speaking, this reveals that the data ...
متن کاملQuantum Error-Correction Codes on Abelian Groups
We prove a general form of bit flip formula for the quantum Fourier transform on finite abelian groups and use it to encode some general CSS codes on these groups.
متن کاملFuzzy Subgroups of Rank Two Abelian p-Group
In this paper we enumerate fuzzy subgroups, up to a natural equivalence, of some finite abelian p-groups of rank two where p is any prime number. After obtaining the number of maximal chains of subgroups, we count fuzzy subgroups using inductive arguments. The number of such fuzzy subgroups forms a polynomial in p with pleasing combinatorial coefficients. By exploiting the order, we label the s...
متن کاملIsoperimetric Functions of Amalgamations of Nilpotent Groups
We consider amalgamations of nitely generated nilpotent groups of class c. We show that doubles satisfy a polynomial isoperimetric inequality of degree 2c. Generalising doubles we introduce non-twisted amalgamations and show that they satisfy a polynomial isoperimetric inequality as well. We give a su cient condition for amalgamations along abelian subgroups to be non-twisted and thereby to sat...
متن کاملPhase transitions in ZN gauge theory and twisted ZN topological phases
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. We find a series of non-Abelian topological phases that are separated from the deconfined phase of Z N gauge theory...
متن کامل